BPSK modulation

In BPSK (Binary Phase Shift Keying), each bit \((u_j \in \{0,1\}\) is mapped to a symbol.

\[ r_j = 1 - 2\,u_j \quad\Longrightarrow\quad r_j = \begin{cases} +1, & \text{if } u_j = 0 \\ -1, & \text{if } u_j = 1 \end{cases} \]

The entire BPSK signal is written as:

\[ s(t) = \sum_{j=1}^{N} r_j \,\cos\bigl(2\pi f_c\,t\bigr)\, \Pi\!\Bigl(\frac{t - jT_r}{T_r}\Bigr), \]

where the rectangular function \(\Pi(z)\) is defined as:

\[ \Pi(z) = \begin{cases} 1, & 0 \le z < 1,\\ 0, & \text{otherwise}. \end{cases} \]

Symbols info

  • \(\vec{u}\) – input bit sequence, where \(u_j \in \{0,1\}\)
  • \(\vec{r}\) – BPSK symbols, where \(r_j \in \{+1,-1\}\)
  • \(f_c\) – carrier frequency
  • \(T_r\) – bit duration
  • \(N\) – number of bits